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We study the quantum dynamics of a generic model fluid with internal quantum states and classical trans-
lational degrees of freedom in two spatial dimensions. The path integral Monte Carlo data for the imaginary
time correlation functions are presented and analyzed by the maximum entropy method. A comparison of the
frequency distribution with those of a mean field approximation and virial expansion shows good agreement at
high and low densities, respectively.@S1063-651X~96!15211-9#
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The computer simulation of models for condensed matter
systems has become an important investigative tool in both
fundamental and engineering research@1#. For the realistic
modeling of real materials at low temperatures it is essential
to take quantum degrees of freedom into account. Although
big progress has been achieved on this topic@2,3#, computer
simulation of quantum systems still lags behind the develop-
ment in the field of classical systems. This holds particularly
for the determination of dynamical information, which was
not possible until recently@4–6#.

Now a successful method to obtain dynamical informa-
tion from computer simulations of quantum systems has re-
cently been proposed by Gubernatis and co-workers@4#. It
uses concepts from probability theory and Bayesian logic to
solve the analytic continuation problem to obtain real time
dynamical information from imaginary time computer simu-
lation data. The method has become known under the name
maximum entropy~MaxEnt!, and has a wide range of appli-
cations in other fields apart from physics.

Recently, phase transitions in two-dimensional systems
@7# have received much attention in experimental@8# as well
as in Monte Carlo~MC! @9–12# studies of adsorbed layers, in
particular at low temperatures where quantum effects be-
come important. In this paper we report some results on the
dynamics of the internal quantum state of a generic two-
dimensional model fluid. The model@13–15,10,11# is in-
tended to mimic an adsorbate in the limit of strong binding
and small corrugation. No attempt is made to model any real
adsorbate realistically. Despite the crudeness of the model, it
has been shown by various previous investigations@10,11#
that it captures the essential features also observed in real
adsorbates. For example, the quite complex phase diagram of
the model is in qualitative agreement with that of real sub-
stances. While the previous investigations of the model fo-
cused on static properties, in this paper we present a study of
the real time quantum dynamics, which can be considered as
a prototype study of the dynamics of a quantum degree of
freedom of an interacting many particle system in con-
tinuum.

The model Hamiltonian of the system is given by
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whereM is the particle mass,pi is the momentum of particle
i , r i j is the distance between particlesi and j , andsx and
sz are the usual Pauli spin half-matrices,\51. The potential
energy consists of a one-particle~two-level! part with tunnel
splitting v0 and two pair interaction termsU(r ) and J(r ).
We choseU(r ) to be a hard disk potential for particles with
diameterd and J(r ) to be a square well potential with
J(r )5J for d,r,1.5d and zero elsewhere. The crucial cou-
pling between quantum and classical variables is achieved
via the distance dependence of the interactionJ(r ) between
the internal quantum states. The total number of particlesN
and the total volumeV is fixed; the dimensionless density is
r*5rd25Nd2/V. The particles are constrained to move in
two spatial dimensions. In the adiabatic approximation we
assume a separation of time scales for the translational and
internal degrees of freedom and treat the translations classi-
cally, which is justified for large particle massesM . This
approximation does indeed hold for a variety of adsorbates.
Thus the Hamiltonian contains both quantum and classical
degrees of freedom. The quantum degrees of freedom are
treated using path integral Monte Carlo~PIMC! techniques.
This yields dynamical correlations functions in imaginary
time which are then converted to real frequency spectral den-
sities using the maximum entropy method.

Application of the Trotter formula @3# results in
the following expression for the system’s partition
function Z(b,N,V)5 limP→`ZP(b,N,V) at temperature
T*5(bJ)21, with the discretized partition function
@14,15,10,11# for fixed Trotter dimensionP being
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l denotes the thermal de Broglie wavelength and the quan-
tum chains have to satisfy periodic boundary conditions with
respect toP.

The equivalent classical Hamiltonian resulting from this
expression for the partition function was then used in canoni-
cal Metropolis Monte Carlo simulations. We denote thermal
averages of an observableA as ^A&. The simulations were
performed forv*5v0 /J54 ~where J51) with N5256
particles and a Trotter dimensionP564 chosen to achieve
good computer performance. Since a value forP satisfying
P/bJ'40 was found to be sufficient for convergence to the
quantum limit@10#, at temperatureT*51 the chosen value
of P was larger than necessary. Since it is well known that
noise works through in a very nonlinear way on the MaxEnt
results we tested our implementation of the procedure by
adding relative Gaussian noise with a standard deviation of
0.8% on correlation function data in the low density limit.
The shape and position of the MaxEnt frequency distribution
~see below! is qualitatively maintained, but the width of the
distribution is increased by a factor of about 1.5. It turned out
that only data with noise of less than 0.1% lead to statisti-
cally reliable results which were only possible to obtain with
about 107 MC steps. The whole study took approximately
5000 CPU hours on a CRAY YMP. Standard particle dis-
placements were performed as well as spin flips. One MC
step consisted of 256 attempted translational displacements
and spin flip attempts of chain segments randomly varying in
length from 1 toP so that 64 spins were attempted to be
flipped in one MC step.

The system has a rich phase diagram@10,11# and in par-
ticular a phase transition from a paramagnetic fluid phase at
low densities to a ferromagnetic fluid phase at high densities
for temperatures above the tricritical point~at T*'0.55).
Here the magnetizationmi of particle i is defined as the
average of the ‘‘classical spins’’ along the Trotter chain,
mi5^(p51

PSi ,p&/P. In the paramagnetic region of the phase
diagram the dynamics of the internal degrees of freedom is
quite different from the dynamics in the ferromagnetic re-
gion since in the latter the ‘‘classical spins’’ along the Trotter
direction are pointing mainly in the same direction~high
‘‘tunneling’’ frequency! whereas in the paramagnetic region
fluctuations of the spin values along the Trotter direction are
frequent ~low ‘‘tunneling’’ frequency!. The dynamics near
the continuous phase transition is of particular interest since
at this point the correlation length diverges and the magnetic
ordering differs in spatial regions of different sizes. This re-
sults in a mixing of the dynamics of low density paramag-
netic areas with the dynamics of high density ferromagnetic
areas, and thus the full dynamics should contain contribu-
tions from many ‘‘tunneling’’ frequency ranges; see below.
In order to study the quantum dynamics of our adsorbate in
the different regions of the phase diagram in detail with the
methods mentioned above, we focused on a particular choice
of the temperature,T*51. The imaginary time correlation
functionsG(t)5Šsz(t)sz(0)‹ of thesz-spins are given by
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with 0<t<b. The numerical valuesG(t) at imaginary time
t5pb/P (p51,2, . . . ,P) are obtained from
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The first term of a virial expansion@15# of the correlation
function is

G~t!5
cosh@v0~t2b/2!#

cosh@v0b/2#
. ~5!

It represents the correlations of noninteracting particles.
In mean field approximation we obtain for the imaginary

time correlation functions@15#
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where J05r*d2rJ(r )g(r ) is determined by the classical
correlation functiong(r ), which was computed iteratively in
Percus-Yevick approximation in two spatial dimensions.
V/25@(J0m)

21(v0/2)
2#1/2, and the magnetizationm is so-

lution of the equation
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for h→0. From Eq. ~6! we see that formÞ0 the mean
field–correlation function contains a time independent con-
stant J0

2m2/(V/2)2, which leads to a peak atv50 in the
spectral density; see below.

The PIMC data obtained for the imaginary time correla-
tions are shown in Fig. 1 for different densities atT*51.
The relative errors of the data are of the order 1024, which is
necessary for the maximum entropy method to work when
there is little previous knowledge as in the present case. At
low densities the average particle distances are large and
since the particle interaction is restricted to a ‘‘square well’’
region@d,r,1.5d, see Eq.~1!#, the probability for particle
interactions is small. Thus the particles occupy mainlysx

eigenstates resulting in a small correlation of thesz spins
and a small value ofG(b/2). In the limit of zero density the
dynamics is purely given by the tunneling of the spins with

FIG. 1. PIMC results~symbols! of the sz imaginary time cor-
relations G(t) versus imaginary time for the densities
r*50.1,0.2,. . . ,0.7 from bottom to top, the temperature is
T*51. The full line shows the results forG(t) according to the
lowest order virial expansion, the dashed lines give the MF values
of G(t) for the densitiesr*50.7,0.6 and 0.5 from top to bottom.
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frequencyv0 which can be described by the zeroth order
term in the virial expansion@15# @see Eq.~5!#, which is
shown in Fig. 1 for comparison. At higher densities the prob-
ability for interaction increases and the particles ‘‘hybridize’’
by leaving theirsx ground states and occupying more and
moresz eigenstates and thus the value ofG(b/2) increases.
This effect finally even leads to a continuous phase transition
@10# from a paramagnetic to a ferromagnetic phase at about
rc*'0.53. In mean field approximation@15# the critical den-
sity is at rc,MF* 50.4, and from Eq.~6! we see that for all
r*,rc,MF* the resulting correlation functions agree with the
lowest order virial expansion result, since the mean field
~MF! value form is zero. Thus the MF correlation functions
increasingly deviate from the PIMC data with increasing
density. Only forr*.rc,MF* there is reasonably good agree-
ment.

In the inset of Fig. 2 we show the mean field frequency
V*5V/J as a function of density forT*51. At this tem-
perature the system undergoes a phase transition from a para-
magnetic to a ferromagnetic fluid at a density whose mean
field value isrc,MF* 50.4. For densities below this value we
obtainV5v0, which agrees with the frequency value of the
low order virial expansion; see Eq.~5!. For r.rc,MF , V
increases with the density due to increase of the magnetiza-
tion.

Besides the deviation mentioned above the main problem
of the dynamical information from the MF approximation is
that it contains only one positive frequency and so the result-
ing real time correlations cannot be damped or describe lo-
calizations ‘‘on one side of the double well’’ due to interfer-
ence effects as one expects for real materials. Thus we
expect that the frequency distribution is not singly peaked
but has a broad distribution, perhaps with several maxima
instead of a single peak at an average mean field frequency.
In order to study the shape of the frequency distribution we
analyze the imaginary time correlations in more detail.

We briefly repeat now the essential parts of themaximum
entropymethod, for details we refer to the literature@4#. We
seek to obtain information on the dynamics of the internal

degree of freedom of the model from PIMC simulations. The
solution of this problem is not straight forward, since PIMC
simulations yield dynamical correlation functions in imagi-
nary time whereas physically relevant, especially regarding
comparison with experimental results, are of course real time
data. Fortunately there is an integral relation,

G~t!5E
2`

1`
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e2tvA~v!

16e2bv , ~8!

that connects correlationsG(t) in imaginary timet with real
frequency spectral densitiesA(v). If this relation could be
inverted and ifA could be determined from the numerical
estimateG(t) for G~t!, one would have the desired dynami-
cal information.

The double sign in Eq.~8! usually refers to Fermi– (1)
and Bose statistics (2) respectively. In our system we ne-
glect the statistics and study thesz ‘‘self correlations.’’ We
consider the symmetrized correlation functions@16# resulting
in the ‘‘1’’ sign in Eq. ~8! andA(v)5A(2v).

Since the numerical estimateG(t) is necessarily incom-
plete and inaccurate the inversion is not possible without any
ambiguity. Gubernatis and co-workers now suggested to re-
solve the ambiguity by choosing the most probableA con-
sistent with the dataG, i.e., they chose theA that maximizes
the conditional probabilityP@AuG#. This is justified since
A has the properties of a probability distribution function:
A(v)>0, *dvA(v),`, A(v) is bounded.

Thea posterioriprobabilityP@AuG# for having the spec-
tral densityA(v) given the simulation dataG is

P@AuG#}eQ ~9!

with Q5aS2x2/2. S has the meaning of an entropy and is
of the form

S52E dvSA~v!lnF A~v!

M ~v!G2A~v!1M ~v! D . ~10!

M (v) is thedefault model, by which additional knowledge
about system properties can be incorporated. Minimum ad-
ditional knowledge is equivalent toM (v)5const. Without
data,S is maximized byA(v)5M (v). x2 measures the de-
viation of the time correlation functionG computed from a
proposedA via Eq. ~8! from the PIMC valueG at the point
tk in imaginary time,

x25(
k

@G~tk!2G~tk!#
2/sk

2 . ~11!

sk is the standard deviation of the simulation data for
G(tk) at tk . The problem of maximizingP@AuG# can be
solved by maximizingQ with respect toA(v), which is
solved iteratively for given PIMC data forG.

In Fig. 2 we showA(v) for the densitiesr*50.1,0.45
and 0.7. Due to results of virial expansions we expect that at
low densities the behavior is dominated by the dynamics of
the isolated particles, resulting in a peak inA(v) at the tun-
neling frequencyv0. With increasing density due to increas-
ing probability of particle interactions we expect a broaden-
ing of the spectral density aroundv0. These expectations

FIG. 2. A(v) via MaxEnt for the densities~a! r*50.1 ~full
line!, ~b! r*50.45 ~dashed line!, ~c! r*50.7 ~long dashed line!,
the temperature isT*51, in all cases a flat default model in the
maximum entropy procedure was used. The vertical lines refer to
the results of the mean field approximation forV*5V/J5v0* for
r*50.1 andV* (r*50.7). Inset: Mean field frequencyV*5V/J
versus density at temperatureT*51.
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have indeed been obtained by MaxEnt. In case of high den-
sities where the system is in the ferromagnetic phase we
obtain a double peak structure forA(v) with a sharp peak at
v50 and a broadened peak at a higher frequency. The cen-
ter of this peak is shifted to higher frequencies with increas-
ing density. This behavior is plausible according to the mean
field results which predict a peak atv50 and a second peak
at the frequcncyV. The values ofV are close to the center
of mass of the broadened high frequency peaks, see Fig. 2
for results at the densityr*50.7.

For densities close to the phase transition density we ob-
tain a broad frequency distribution, see Fig. 2. This shows
that due to the diverging correlation length particles interact
in spatial areas of different sizes, densities and magnetiza-

tions resulting in a spectral density approximatively being
given as a superposition of the functions corresponding to
the ferromagnetic and paramagnetic cases. In this region of
the phase diagram the results of the mean field study are not
reliable, since critical fluctuations are not treated properly in
this approximation. In order to analyze the quantum dynam-
ics of a two-dimensional fluid undergoing a phase transition
it turns out to be essential to go beyond MF approximation
and to apply methods as those presented in this paper.
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