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Path integral Monte Carlo study of the internal quantum state dynamics
of a generic model fluid
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We study the quantum dynamics of a generic model fluid with internal quantum states and classical trans-
lational degrees of freedom in two spatial dimensions. The path integral Monte Carlo data for the imaginary
time correlation functions are presented and analyzed by the maximum entropy method. A comparison of the
frequency distribution with those of a mean field approximation and virial expansion shows good agreement at
high and low densities, respective\51063-651X96)15211-9

PACS numbegps): 61.20.Ja, 05.36:d, 02.70.Lq, 64.60.Cn

The computer simulation of models for condensed mattewhereM is the particle masg; is the momentum of particle
systems has become an important investigative tool in both, ri; is the distance between particlesnd j, and o™ and
fundamental and engineering reseafth For the realistic 42 are the usual Pauli spin half-matricés= 1. The potential
modeling of real materials at low temperatures it is essentiaénergy consists of a one-parti¢tevo-leve) part with tunnel
to take quantum degrees of freedom into account. AlthougRplitting w, and two pair interaction termg(r) and J(r).
big progress has been achieved on this tgpi8], computer  \We choseU(r) to be a hard disk potential for particles with
simulation of quantum systems still lags behind the developdiameterd and J(r) to be a square well potential with
ment in the field of classical SyStemS. This holds particularIyJ(r) =J ford<r<1.5d and zero elsewhere. The crucial cou-
for the determination of dynamical information, which was pling between quantum and classical variables is achieved
not possible until recentlj4—6. via the distance dependence of the interactior) between
~ Now a successful method to obtain dynamical informa-he internal quantum states. The total number of partinles
tion from computer simulations of quantum systems has reand the total volum# is fixed; the dimensionless density is
cently been proposed by Gubernatis and co-workéfsit  ,+— ;42— Nd%/V. The particles are constrained to move in
uses concepts from probability theory and Bayesian logic tgyg spatial dimensions. In the adiabatic approximation we
solve the analytic continuation problem to obtain real timeassume a separation of time scales for the translational and
dynamical information from imaginary time computer simu- jnternal degrees of freedom and treat the translations classi-
lation data. The method has become known under the namegyly, which is justified for large particle massds. This
maximum entropyMaxEny, and has a wide range of appli- approximation does indeed hold for a variety of adsorbates.
cations in other fields apart from physics. _ Thus the Hamiltonian contains both quantum and classical

Recently, phase transitions in two-dimensional SYStem%Iegrees of freedom. The quantum degrees of freedom are
[7] have received much attention in experimefi@dlas well  treated using path integral Monte CarIMC) techniques.
as in Monte CarldMC) [9-12 studies of adsorbed layers, in Thjs yields dynamical correlations functions in imaginary
particular at low temperatures where quantum effects begme which are then converted to real frequency spectral den-
come important. In this paper we report some results on thgjtjes using the maximum entropy method.
dynamics of the internal quantum state of a generic two- Application of the Trotter formula[3]
dimensional model fluid. The mod¢l3-15,10,111is in-  the following expression for the system’s partition

tended to mimic an adsorbate in the limit of strong bindingsnction Z(BN,V)=limp_.Zp(B,N,V) at temperature
and small corrugation. No attempt is made to model any reaf« =(BJ)~%, with the discretized partition function

adsorbate realistically. Despite the crudeness of the model, ﬂ§4,15,10,11f0r fixed Trotter dimensioP being
has been shown by various previous investigatidiG;11]

that it captures the essential features also observed in real ANP
adsorbates. For example, the quite complex phase diagram __'P N _ -
the model is in qualitative agreement with that of real sub—OZP(B’N’V) A2NNI f ar ex;{ 'BiE<j U(r”)}
stances. While the previous investigations of the model fo-
cused on static properties, in this paper we present a study of
the real time quantum dynamics, which can be considered as

results in

x% ex] — B{WS({SH + Wae({SH{rH}1.

a prototype study of the dynamics of a quantum degree of )
freedom of an interacting many particle system in con-
tinuum.

The model Hamiltonian of the system is given by

N
0

N 2
= p_'_w_ X _ z 7
H_|:2]_2M 2i:]_ 0'i+;j U(r”) i2<j\](rij)0'i0'j,
)
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We({Sh=—2{L,3)_1KpS ;S p+1 denotes the effective
intramolecular potential and Wi ({S}{r})=
—(1/P)=L;20_13(ri)S pS;,p the effectiveintermolecular
potential, with the pseudospin variables; ,=*1,
Ap=[3sinh(Bwy/P)1*? and Kp=(1/2B)In[coth(Bwy/2P)].
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\ denotes the thermal de Broglie wavelength and the quan- 1.0
tum chains have to satisfy periodic boundary conditions with
respect toP. 0.8
The equivalent classical Hamiltonian resulting from this
expression for the partition function was then used in canoni- ® o6
cal Metropolis Monte Carlo simulations. We denote thermal S
averages of an observahl¢ as(.A). The simulations were [ 297
performed forw* =wy/J=4 (where J=1) with N=256 04 sl 1
particles and a Trotter dimensidh=64 chosen to achieve B Sciidiion |
good computer performance. Since a value Rosatisfying 0-20_0 02 04 06 o8 1.0

P/BJ=~40 was found to be sufficient for convergence to the /B
guantum limit[10], at temperaturd* =1 the chosen value
of P was larger than necessary. Since it is well known that 5. ) ]
noise works through in a very nonlinear way on the Maxent F!G- 1. PIMC resultssymbols of the o* imaginary time cor-
results we tested our implementation of the procedure byations G(7) Verius Imaginary time fr?r the — densities
adding relative Gaussian noise with a standard deviation *;2'1’1952"]‘['“'"3678 SLOOTVSbt?]t‘;OQSJﬁS t]f(’g(’ﬂt :Ccfrrgiﬂzr?;uiﬁe 1S
0.8% on Correlatlon _functlon data in the low dens_lty_llm!t. lowest order virial expansion, the dashed lines give the MF values
The shape and position of the MaxEnt frequency d|str|but|onOf G(7) for the densitieg* = 0.7,0.6 and 0.5 from top to bottom
(see belowis gualitatively maintained, but the width of the " ' '

distribution is increased by a factor of about 1.5. It turned out 1 /NP
that only data with noise of less than 0.1% lead to statisti- _ =
cally reliable results which were only possible to obtain with G(PAIP) NP < .21 le S""S"p+1> ' @

about 10 MC steps. The whole study took approximately

5000 CPU hours on a CRAY YMP. Standard particle dis-The first term of a virial expansiofil5] of the correlation
placements were performed as well as spin flips. One Mdunction is

step consisted of 256 attempted translational displacements

and spin flip attempts of chain segments randomly varying in G(r) = coshwo(7—B12)]
length from 1 toP so that 64 spins were attempted to be ~ coshwoB/2]
flipped in one MC step.

The system has a rich phase diagrgi,11] and in par- It represents the correlations of noninteracting particles.
ticular a phase transition from a paramagnetic fluid phase at In mean field approximation we obtain for the imaginary
low densities to a ferromagnetic fluid phase at high densitie§me correlation functionl15]
for temperatures above the tricritical poifat T* ~0.55). O BI2)]

Here the magnetizatiom; of particle i is defined as the 202 2 pCOSA (7™

average of the “classical spins” along the Trotter chain, G(7)=Jom/ (Qf2)"+ (@o/ Q) coshQp/2] ©)
mi=<2p:1PSi,p>/P. In the paramagnetic region of the phase

diagram the dynamics of the internal degrees of freedom iwhere Jo=pfd?rJ(r)g(r) is determined by the classical
quite different from the dynamics in the ferromagnetic re-correlation functiorg(r), which was computed iteratively in
gion since in the latter the “classical spins” along the Trotter Percus-Yevick approximation in two spatial dimensions.
direction are pointing mainly in the same directigmgh Q2= (Iom)?+ (wo/2)?]*? and the magnetizatiom is so-
“tunneling” frequency whereas in the paramagnetic region lution of the equation

fluctuations of the spin values along the Trotter direction are
frequent(low “tunneling” frequency. The dynamics near
the continuous phase transition is of particular interest since
at this point the correlation length diverges and the magnetic
ordering differs in spatial regions of different sizes. This re-for h—0. From Eq.(6) we see that fom#0 the mean
sults in a mixing of the dynamics of low density paramag-field—correlation function contains a time independent con-
netic areas with the dynamics of high density ferromagnetictant J3m?/(£2/2)?, which leads to a peak ab=0 in the
areas, and thus the full dynamics should contain contribuspectral density; see below.

tions from many “tunneling” frequency ranges; see below. The PIMC data obtained for the imaginary time correla-
In order to study the quantum dynamics of our adsorbate ifions are shown in Fig. 1 for different densities Bt=1.

the different regions of the phase diagram in detail with theThe relative errors of the data are of the order 4,@vhich is
methods mentioned above, we focused on a particular choiggecessary for the maximum entropy method to work when
of the temperatureT* =1. The imaginary time correlation there is little previous knowledge as in the present case. At
functionsG(7) =(o*(7)0*(0)) of the o*-spins are given by |ow densities the average particle distances are large and
since the particle interaction is restricted to a “square well”
region[d<r<1.5d, see Eq(1)], the probability for particle
interactions is small. Thus the particles occupy maialy
eigenstates resulting in a small correlation of thespins

with 0= 7< 8. The numerical value§(7) at imaginary time and a small value 0&(£/2). In the limit of zero density the
=pBI/P (p=1,2,...,P) are obtained from dynamics is purely given by the tunneling of the spins with

®)

Jom(h)+h
m(h)= Wtant{,@ﬂ(h)&] (7

1 N
g(r)=—_21 (eMote”Mat) &)
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Aw) degree of freedom of the model from PIMC simulations. The
L Q solution of this problem is not straight forward, since PIMC
12 r sl MF simulations yield dynamical correlation functions in imagi-
10 b nary time whereas physically relevant, especially regarding
i 4 comparison with experimental results, are of course real time
0.8 -‘.l data. Fortunately there is an integral relation,
1 *
06 _|‘. ©o %602 04 06 ¢ e T TA(w)
‘. . . 9(7-)=J do = Fo (8)
|'| Q(p=0.7) - -
} N that connects correlatioriq 7) in imaginary timer with real
ST S frequency spectral densitiéS w). If this relation could be
10 @ inverted and ifA could be determined from the numerical
estimateG(r) for G(7), one would have the desired dynami-
FIG. 2. A(w) via MaxEnt for the densitiega) p* =0.1 (full cal information.
line), (b) p*=0.45 (dashed ling (c) p*=0.7 (long dashed ling The double sign in Eq(8) usually refers to Fermi—+)

the temperature i§*=1, in all cases a flat default model in the and Bose Statistics-{) respective|y_ In our System we ne-
maximum entropy procedure was used. The vertical lines refer t‘glect the statistics and study té “self correlations.” We
the results of the mean field approximation for =Q/J=wg for  congsjder the symmetrized correlation functi§as] resulting
p*=0.1 andQ* (p* =0.7). Inset: Mean field frequend@* =Q/J in the “+” sign in Eq. (8) andA(w)=A(— )

versus density at temperaturé =1. Since the numerical estima@(r) is necessarily incom-

. , plete and inaccurate the inversion is not possible without any
frequencyw, which can be described by the zeroth orderympigyity. Gubernatis and co-workers now suggested to re-

term in the virial expansiori15] [see Eq.(5)], which is  gjye'the ambiguity by choosing the most probahleon-
shown in Fig. 1 for comparison. At higher densities the prob-;gient with the dats, i.e., they chose tha that maximizes
ability fqrmtergctlxon increases and the parucle; hybridize the conditional probabilityP[ A|G]. This is justified since
by leaving theiro™ ground states and occupying more andp has the properties of a probability distribution function:
moreg* eigenstates and thus the vaIu_eGn(fB/Z) increases. A(0)=0, [dwA(w)<=, A(w) is bounded.

This effect finally even Igads to a continuous phase transition "4 5 posterioriprobability P[ A|G] for having the spec-
[];O] from a paramagnetlc toa ferro_magnetlc ph;\se at aboq}al densityA(w) given the simulation dat& is

pe~0.53. In mean field approximatidri5] the critical den-

sity is at p:,MF=0.4, and from Eq(6) we see that for all P[A|G]xe® 9

p* <pg mr the resulting correlation functions agree with the

lowest order virial expansion result, since the mean fieldvith Q=aS— x?/2. S has the meaning of an entropy and is
(MF) value form is zero. Thus the MF correlation functions of the form
increasingly deviate from the PIMC data with increasing

density. Only forp* > pg ¢ there is reasonably good agree- S— _J’ dw(A(w)In A(w)
ment. M(w)

In the inset of Fig. 2 we show the mean field frequency
Q*=0/J as a function of density fof* =1. At this tem- M(w) is thedefault modelby which additional knowledge
perature the system undergoes a phase transition from a pa@out system properties can be incorporated. Minimum ad-
magnetic to a ferromagnetic fluid at a density whose mea#fitional knowledge is equivalent tbl(w)=const. Without
field value isp* ,==0.4. For densities below this value we data,Sis maximized byA(w) =M(w). x* measures the de-
obtainQ = w, which agrees with the frequency value of the viation of th(_e time correlation functiog computed from a
low order virial expansion; see E@5). For p>pc e, Q pro-po.sedA. via Eq. (8) from the PIMC valueG at the point
increases with the density due to increase of the magnetizg« N Imaginary time,
tion.

Besides the deviation mentioned above the main problem
of the dynamical information from the MF approximation is
that it contains only one positive frequency and so the result-
ing real time correlations cannot be damped or describe loek is the standard deviation of the simulation data for
calizations “on one side of the double well” due to interfer- G(7y) at 7. The problem of maximizind®[A|G] can be
ence effects as one expects for real materials. Thus weolved by maximizingQ with respect toA(w), which is
expect that the frequency distribution is not singly peakedsolved iteratively for given PIMC data fds.
but has a broad distribution, perhaps with several maxima In Fig. 2 we showA(w) for the densitiep* =0.1,0.45
instead of a single peak at an average mean field frequencgnd 0.7. Due to results of virial expansions we expect that at
In order to study the shape of the frequency distribution wdow densities the behavior is dominated by the dynamics of
analyze the imaginary time correlations in more detail. the isolated particles, resulting in a peakAifw) at the tun-

We briefly repeat now the essential parts of theximum  neling frequencywy. With increasing density due to increas-
entropymethod, for details we refer to the literatdg. We  ing probability of particle interactions we expect a broaden-
seek to obtain information on the dynamics of the internaliing of the spectral density around,. These expectations

}—A(w)+|\/|(w)). (10

x2:2k [G(m)—G(m) 1. (11)
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have indeed been obtained by MaxEnt. In case of high dertions resulting in a spectral density approximatively being
sities where the system is in the ferromagnetic phase wgiven as a superposition of the functions corresponding to
obtain a double peak structure fafw) with a sharp peak at the ferromagnetic and paramagnetic cases. In this region of
w=0 and a broadened peak at a higher frequency. The ceffh€ phase diagram the results of the mean field study are not
ter of this peak is shifted to higher frequencies with increasreliable, since critical fluctuations are not treated properly in
ing density. This behavior is plausible according to the mearhis approximation. In order to analyze the quantum dynam-
field results which predict a peak @t=0 and a second peak €S ofa two-dlmensmnal_flwd undergoing a phase transition
at the frequency). The values of2 are close to the center It turns out to be essential to go beyond MF approximation
of mass of the broadened high frequency peaks, see Fig. afd to apply methods as those presented in this paper.
for results at the density* =0.7. F.S. thanks the Deutsche Forschungsgemeinschaft DFG
For densities close to the phase transition density we obfor the supportGrant No. Ni-259/6-2 and P.N. thanks the
tain a broad frequency distribution, see Fig. 2. This show®FG for support(Heisenberg Foundatiopn The computa-
that due to the diverging correlation length particles interactions were carried out on the CRAY-YMP of the HLRZ at
in spatial areas of different sizes, densities and magnetizalllich and of the RHRK at Kaiserslautern.
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